

Harris Harris Harris Harris	rozentr	echnur	ng	
Aufgabennummer: 1_173		Prüfungsteil:	Typ 1 ⊠	Тур 2 🗆
Aufgabenformat: offenes Format Grundkompetenz: AN 1.1				
keine Hilfsmittel erforderlich				
Aufgrund einer Beförderung erl Aufgabenstellung:	höht sich das Ge	halt eines Ange	estellten von €	£ 2.400 auf € 2.760.
Um wie viel Prozent ist sein Ge	halt gestiegen?			

Prozentrechnung 2

Möglicher Lösungsweg

 $\frac{2760 - 2400}{2400} = 0,15$

Sein Gehalt ist um 15 % gestiegen.

Lösungsschlüssel

Die Aufgabe gilt nur dann als richtig gelöst, wenn der Wert exakt angegeben ist.

Mitt	dere Änd	derung	srate	
Aufgabennummer: 1_169		Prüfungsteil:	Typ 1 ⊠	Тур 2 🗆
Aufgabenformat: offenes Form	at	Grundkompetenz: AN 1.1		
keine Hilfsmittel gewohnte Hilfsmittel Desondere Technologie erforderlich				
Gegeben ist die Funktion f mit Aufgabenstellung: Berechnen Sie die mittlere Änd			3]!	

Mittlere Änderungsrate 2

	Lösung	swea	
$\frac{f(3) - f(1)}{2} = 4$			

Lösungsschlüssel

Ein Punkt für die Angabe des korrekten Wertes.

Ände	erung de	er Spar	nnung	
Aufgabennummer: 1_224	and the second and th	Prüfungsteil:	Typ 1 ⊠	Тур 2 🗆
Aufgabenformat: halboffenes Format Grundkompetenz: AN 1.1				
keine Hilfsmittel erforderlich	gewohnte l möglich	Hilfsmittel	□ besonder	ere Technologie lich
Die nachstehende Abbildung z eines physikalischen Experimer 36 U(t) 32 28 24 20 16 12 8 4 0 0 1 1 Aufgabenstellung:	2 3 4 5	6 7 8	9 10	
10 Sekunden des Experiments absolute Änderung:		•		
relative Änderung:9				

Änderung der Spannung 2

Möglicher Lösungsweg

absolute Änderung: 12 V relative Änderung: 60 %

Lösungsschlüssel

Die Aufgabe ist als richtig gelöst zu werten, wenn beide Werte korrekt angegeben sind.

Aufgabennummer: 1_004 Prüfungsteil: Typ 1 Typ 2 Aufgabenformat: Multiple Choice (2 aus 5) Aufgabenformat: Multiple Choice (2 aus 5) Aufgabenformat: Multiple Choice (2 aus 5) Aufgabenstellung: Aufgabenstellung: Aufgabenstellung: Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind! Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß. Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich. Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5. Die momentane Änderungsrate an der Stelle x = 6.	i i i	Anderur	ngsmaß	Be	
keine Hilfsmittel erforderlich Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung f(x) = 0,1x². Aufgabenstellung: Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind! Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß. Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich. Die momentane Änderungsrate an der Stelle x = 2 ist größer als	Aufgabennummer: 1_004		Prüfungsteil:	Typ 1 ⊠ Ty	/p2 □
Die nachstehende Abbildung zeigt den Graphen der Funktion f mit der Gleichung $f(x) = 0, 1x^2$. Aufgabenstellung: Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind! Die absolute Änderung in den Intervallen $[0; 3]$ und $[4; 5]$ ist gleich groß. Die mittlere Änderungsrate der Funktion f in den Intervallen $[0; 2]$ und $[2; 4]$ ist gleich. Die momentane Änderungsrate an der Stelle $x = 5$ hat den Wert $2,5$.	Aufgabenformat: Multiple Choi	ce (2 aus 5)	Grundkompet	enz: AN 1.3	
Aufgabenstellung: Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind! Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß. Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich. Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5. Die momentane Änderungsrate an der Stelle x = 2 ist größer als		gewohnte möglich	Hilfsmittel		Technologie
Aufgabenstellung: Kreuzen Sie die beiden Aussagen an, die für die gegebene Funktion f zutreffend sind! Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß. Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich. Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5. Die momentane Änderungsrate an der Stelle x = 2 ist größer als	Die nachstehende Abbildung z	eigt den Graphe	n der Funktion	f mit der Gleichun	$g f(x) = 0, 1x^2.$
Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß. ☐ Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich. ☐ Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5. ☐ Die momentane Änderungsrate an der Stelle x = 2 ist größer als	5- 4- 3- 1- 0 0 1	2 3 4	5 6	7 8 ×	
Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich.	Kreuzen Sie die beiden Aussag	gen an, die für di	ie gegebene Fu	nktion f zutreffend	sind!
und [2; 4] ist gleich. Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5. Die momentane Änderungsrate an der Stelle x = 2 ist größer als	Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß.				
Die momentane Änderungsrate an der Stelle x = 2 ist größer als					
	Die momentane Änderungsrate an der Stelle x = 5 hat den Wert 2,5.				
				größer als	
Die Steigung der Sekante durch die Punkte $A=(3 f(3))$ und $B=(6 f(6))$ ist größer als die momentane Änderungsrate an der Stelle $x=3$.	Die Steigung der Seka ist größer als die mom	nte durch die Pu entane Änderun)) und $B = (6 f(6))$ telle $x = 3$.	

Änderungsmaße 2

Lösungsweg

Die absolute Änderung in den Intervallen [0; 3] und [4; 5] ist gleich groß.	×
Die mittlere Änderungsrate der Funktion f in den Intervallen [0; 2] und [2; 4] ist gleich.	
Die momentane Änderungsrate an der Stelle $x = 5$ hat den Wert 2,5.	
Die momentane Änderungsrate an der Stelle $x=2$ ist größer als die momentane Änderungsrate an der Stelle $x=6$.	
Die Steigung der Sekante durch die Punkte $A = (3 f(3))$ und $B = (6 f(6))$ ist größer als die momentane Änderungsrate an der Stelle $x = 3$.	×

Lösungsschlüssel

Die Aufgabe gilt nur dann als richtig gelöst, wenn genau die zwei zutreffenden Aussagen angekreuzt sind.

	Frei	er Fall		
Aufgabennummer: 1_093		Prüfungsteil:	Typ 1 ⊠	Typ 2 □
Aufgabenformat: offenes F	ormat	Grundkompe	tenz: AN 1.3	
keine Hilfsmittel erforderlich	⊠ gewohnte möglich	te Hilfsmittel Desondere Technolog erforderlich		
Für einen frei fallenden Kör ist $g \approx 10 \text{ m/s}^2$ die Fallbeso		g-Funktion s(t) o	durch $s(t) = \frac{g}{2}$	\cdot t^2 gegeben. Dabei
Aufgabenstellung:				
Berechnen Sie die mittlere	Geschwindigkeit in	m/s im Zeitinten	vall [2; 4] Sek	unden!

Freier Fall 2

Möglicher Lösungsweg

$$\overline{V} = \frac{s(4) - s(2)}{4 - 2} = \frac{80 - 20}{2} = 30$$

Die mittlere Geschwindigkeit beträgt 30 m/s.

Lösungsschlüssel

Es muss ein Lösungsweg erkennbar sein. Die Angabe der korrekten Maßzahl ohne entsprechende Einheit ist ausreichend.

Aufgabennummer: 1_286 Aufgabenformat: Multiple Choice (x aus 5) Seeine Hilfsmittel Gewohnte Hilfsmittel Desondere Technologie Desondere Tech		Tempera	turverla	auf		
keine Hilfsmittel erforderlich Sewohnte Hilfsmittel Desondere Technologie	Aufgabennummer: 1_286		Prüfungstei	l: Typ1⊠ Ty	p2 🗆	
Aus dem nachstehend dargestellten Graphen der Funktion T lässt sich der Temperaturverla in °C in einem Reagenzglas während eines chemischen Versuchs für die ersten 7 Minuten alesen.	Aufgabenformat: Multiple C	Choice (x aus 5)	Grundkomp	petenz: AN 1.3		
in °C in einem Reagenzglas während eines chemischen Versuchs für die ersten 7 Minuten alesen.			lilfsmittel			
40	in °C in einem Reagenzglas					
	30	T	5	1 1 1	iin)	
	Im Intervall [3; 6] ist o	lie mittlere Änderungs	srate annäherr	nd 0 °C/min.		
Im Intervall [3; 6] ist die mittlere Änderungsrate annähernd 0 °C/min.	Im Intervall [0,5; 1,5]	ist der Differenzenqu	otient größer a	ls 25 °C/min.		
			n dem die mor	mentane Änderungs-		
Im Intervall [0,5; 1,5] ist der Differenzenquotient größer als 25 °C/min.	Der Differenzialquotie	ent zum Zeitpunkt t =	3 ist annäherr	nd –10 °C/min.		
Im Intervall [0,5; 1,5] ist der Differenzenquotient größer als 25 °C/min. ☐ Im Intervall [0; 2] gibt es einen Zeitpunkt, in dem die momentane Änderungsrate 0 °C/min beträgt. ☐	Der Differenzenquotie 0 °C/min.	ent ist im Intervall [2; i] mit 2 < t < 6	immer kleiner als		

Temperaturverlauf 2

Lösung

Im Intervall [3; 6] ist die mittlere Änderungsrate annähemd 0 °C/min.	×
Im Intervall [0; 2] gibt es einen Zeitpunkt, in dem die momentane Änderungsrate 0°C/min beträgt.	×
Der Differenzialquotient zum Zeitpunkt $t=3$ ist annähemd -10°C/min .	\boxtimes
Der Differenzenquotient ist im Intervall [2; t] mit 2 < t < 6 immer kleiner als 0 °C/min.	×

Lösungsschlüssel

Ein Punkt ist genau dann zu geben, wenn ausschließlich alle laut Lösungserwartung richtigen Antwortmöglichkeiten angekreuzt sind.

Freier Fall eines Körpers					
Aufgabennummer: 1_174 Prüfungsteil: Typ 1 ⊠ Typ 2 [
Aufgabenformat: Multiple Choice	ce (x aus 5)	Grundkompe	tenz: AN 1.3		
keine Hilfsmittel erforderlich				ogie	
Die Funktion s mit $s(t) = \frac{g}{2} \cdot t^2$ (t Zeit t (in Sekunden) im freien Fa Aufgabenstellung: Kreuzen Sie die zutreffende(n)	all zurückgelegten \			er in der	
Die erste Ableitung s' der Funktion s an der Stelle t_1 beschreibt die Momentangeschwindigkeit des Körpers zum Zeitpunkt t_1 .					
Die zweite Ableitung s'' der Funktion s an der Stelle t_1 beschreibt die momentane Änderungsrate der Geschwindigkeit zum Zeitpunkt t_1 .					
Der Differenzenquotient der Funktion s im Intervall [t_1 ; t_2] gibt den in diesem Intervall zurückgelegten Weg an.					
Der Differenzialquotient der Funktion s an einer Stelle t gibt den Winkel an, den die Tangente an den Graphen im Punkt $P = (t s(t))$ mit der positiven x -Achse einschließt.					
Der Differenzenquotient der F der Geschwindigkeit pro Sek			die mittlere Änderung		

Freier Fall eines Körpers 2

Lösung	
Die erste Ableitung s' der Funktion s an der Stelle t_1 beschreibt die Momentangeschwindigkeit des Körpers zum Zeitpunkt t_1 .	×
Die zweite Ableitung s" der Funktion s an der Stelle t_1 beschreibt die momentane Änderungsrate der Geschwindigkeit zum Zeitpunkt t_1 .	×
Der Differenzenquotient der Funktion s' im Intervall $[t_1; t_2]$ gibt die mittlere Änderung der Geschwindigkeit pro Sekunde im Intervall $[t_1; t_2]$ an.	×

Lösungsschlüssel

Ein Punkt ist nur dann zu geben, wenn genau drei Aussagen angekreuzt sind und alle Kreuze richtig gesetzt sind.

Freier Fall –	Momer	ntanges	chwin	digkeit
Aufgabennummer: 1_094 Prüfungsteil: Typ 1 ⊠ Typ 2 □				
Aufgabenformat: offenes Format Grundkompetenz: AN 1.3				
keine Hilfsmittel erforderlich	⊠ gewohnte Hilfsmittel möglich □ besondere Technologie erforderlich			
Für einen frei fallenden Körper ist $g \approx 10 \text{ m/s}^2$ die Fallbeschlei		j-Funktion s(t) o	durch $s(t) = \frac{g}{2}$	· t² gegeben. Dabei
Aufgabenstellung:				
Berechnen Sie die Momentanç	geschwindigkeit i	n m/s zum Zeitţ	bunkt $t = 2 \text{ Se}$	ekunden!

Freier Fall - Momentangeschwindigkeit

Möglicher Lösungsweg

v(t) = s'(t) = 10t

v(2) = 20

Die Momentangeschwindigkeit zum Zeitpunkt t = 2 Sekunden beträgt 20 m/s.

Lösungsschlüssel

Es muss ein Lösungsweg erkennbar sein. Die Angabe der korrekten Maßzahl ohne entsprechende Einheit ist ausreichend.

D	ifferen:	zenquoti	ent			
Aufgabennummer: 1_003		Prüfungsteil:	Typ 1 ⊠	Т	yp 2 □	
Aufgabenformat: Lückentext		Grundkompe	Grundkompetenz: AN 1.3			
keine Hilfsmittel erforderlich	⊠ gewohr möglich	te Hilfsmittel	besondere Technologie erforderlich			
Die nachstehende Abbildung	zeigt den Grap	hen einer Funktior	n f mit einer S	Sekan	te.	
Aufgabenstellung: Ergänzen Sie die Textlücken ir so, dass eine mathematisch k Der Ausdruck	orrekte Aussa	ge entsteht!	x		tigen Satzteile	
•		2				
$\frac{f(x) - f(x_0)}{h}$	die	Steigung von f an	der Stelle x			
$\frac{f(x_0+h)-f(x_0)}{h}$	die	1. Ableitung der F	unktion f			
$\frac{f(x_0+h)-f(x_0)}{x_0}$		mittlere Änderung rvall [x ₀ ; x ₀ + h]	srate im			

Differenzengoutient 2

Lösungsweg

Der Ausdruck _____ beschreibt die _____ .

$\frac{f(x) - f(x_0)}{h}$	
$\frac{f(x_0+h)-f(x_0)}{h}$	×
$\frac{f(x_0+h)-f(x_0)}{x_0}$	

2	
die Steigung von f an der Stelle x	
die 1. Ableitung der Funktion f	
die mittlere Änderungsrate im Intervall [x_0 ; $x_0 + h$]	×

Lösungsschlüssel

Die Aufgabe gilt nur dann als richtig gelöst, wenn genau die beiden zutreffenden Aussagen angekreuzt sind.

Beweg	gung e	eines Kö	örpers		
Aufgabennummer: 1_176		Prüfungsteil:	Typ 1 ⊠	Тур 2 □	
Aufgabenformat: Lückentext		Grundkompetenz: AN 1.2			
keine Hilfsmittel erforderlich	gewohnte Hilfsmittel möglich		besondere Technologie erforderlich		
Bei der Bewegung eines Körpers gausgangspunkt seiner Bewegung Der Differenzenquotient $\frac{s(t_2)-s(t_1)}{t_2-t_1}$ gi Aufgabenstellung: Ergänzen Sie die Textlücken im foteile so, dass eine korrekte Aussalber Ausdruck $\lim_{t_2 \to t_1} \frac{s(t_2)-s(t_1)}{t_2-t_1}$ gibt	nach <i>t</i> Seku bt seine mitt olgenden Sa age entsteh	nden an. Iere Geschwindi atz durch Ankre	igkeit im Zeitinte	ervall $[t_1;t_2]$ an.	
0			2		
Momentangeschwindigkeit		zwischen den	Zeitpunkten t_1	und t_2	
Momentanbeschleunigung		zum Zeitpunk	t <i>t</i> 1		
durchschnittliche Beschleunigu	ing 🗆	zum Zeitpunk	t <i>t</i> ₂		

Bewegung eines Körpers 2

	Lösui	ngsweg	
•		2	
Momentangeschwindigkeit	×		

Lösungsschlüssel

Ein Punkt ist nur dann zu geben, wenn für beide Lücken ausschließlich der jeweils richtige Satzteil angekreuzt ist.